ENCYCLOPÉDIE OU DICTIONNAIRE RAISONNÉ
DES SCIENCES, DES ARTS ET DES MÉTIERS

RECHERCHE Accueil Mises en garde Documentation ATILF ARTFL Courriel

Previous subarticle

Application (Page 1:553)

Application de la Métaphysique à la Géométrie. On abuse quelquefois de la Métaphysique en Géométrie, comme on abuse de la méthode des Géometres en Métaphysique. Ce n'est pas que la Géométrie n'ait, comme toutes les autres Sciences, une métaphysique qui lui est propre; cette métaphysique est même certaine & incontestable, puisque les propositions géométriques qui en résultent, sont d'une évidence à laquelle on ne sauroit se refuser. Mais comme la certitude des Mathématiques vient de la simplicité de son objet, la Métaphysique n'en sauroit être trop simple & trop lumineuse: elle doit toûjours se réduire à des notions claires, précises & sans aucune obscurité. En effet, comment les conséquences pourroient - eiles être certaines & évidentes, si les principes ne l'étoient pas? Cependant quelques Auteurs ont crû pouvoir introduire dans la Géometrie une métaphysique souvent assez obscure, & qui pis est, démontrer par cette métaphysique des vérités dont on étoit déjà certain par d'autres principes. C'étoit le moyen de rendre ces vérités douteuses, si elles avoient pû le devenir. La Géométrie noavelle a principalement donné occasion à cette mauvaise méthode. On a cru que les infiniment petits qu'elle considere, étoient des quantités réelles; on a voulu admettre des infinis plus grands les uns que les autres; on a reconnu des infiniment petits de différens ordres, en regardant tout cela comme des réalités; au lieu de chercher à réduire ces suppositions & ces calculs à des notions simples. Voyez Differentiel, Infini & Infiniment petit.

Un autre abus de la Métaphysique en Géométrie, consiste à vouloir se borner dans certainscas à la Métaphysique pour des démonstrations géométriques. En supposant même que les principes métaphysiques dont on part, soient certains & évidens, il n'y a guere de propositions géométriques qu'on puisse démontrer rigoureusement avec ce seul secours; presque toutes demandent, pour ainsi dire, la toise & le calcul. Cette maniere de démontrer est bien matérielle, si l'on veut. mais enfin c'est presque toûjours la seule qui soit sûre. C'est la plume à la main, & non pas avec des raisonnemens métaphysiques, qu'on peut faire des combinaisons & des calculs exacts.

Au reste, cette derniere métaphysique dont nous parlons, est bonne jusqu'à un certain point, pourvû qu'on ne s'y borne pas: elle fait entrevoir les principes des découvertes; elle nous fournit des vûes; elle nous met dans le chemin: mais nous ne sommes bien sûrs d'y être, si on peut s'exprimer de la sorte, qu'après nous être aidés du bâton du calcul, pour connoitre les objets que nous n'entrevoyions auparavant que confusément.

Il semble que les grands Géometres devroient être toûjours excellens Métaphysiciens, au moins sur les objets de leur science: cela n'est pourtant pas toûjours. Quelques Géometres ressemblent à des personnes qui auroient le sens de la vûe contraire à celui du toucher: mais cela ne prouve que mieux combien le calcul est nécessaire pour les vérités géométriques. Au reste je crois qu'on peut du moins assûrer qu'un Géometre qni est mauvais Métaphysicien sur les objets dont il s'occupe, sera à coup sur Métaphysicien détestable sur le reste. Ainsi la Géométrie qui mesure les corps, peut servir en certains cas à mesurer les esprits même.

Next subarticle


The Project for American and French Research on the Treasury of the French Language (ARTFL) is a cooperative enterprise of Analyse et Traitement Informatique de la Langue Franšaise (ATILF) of the Centre National de la Recherche Scientifique (CNRS), the Division of the Humanities, the Division of the Social Sciences, and Electronic Text Services (ETS) of the University of Chicago.

PhiloLogic Software, Copyright © 2001 The University of Chicago.